Two types of distributed constant false alarm rate (CFAR) detection using binary and fuzzy weighting functions in fusion center are developed. In the two types of distributed detectors, it was assumed that the clutter parameters at the local sensors are unknown and each local detector performs CFAR processing based on ML and OS CFAR processors before transmitting data to the fusion center. At the fusion center, received data is weighted either by a binary or a fuzzy weighting functions and combined according to deterministic rules, constructing global test statistics. Moreover, for the Weibull clutter, the expression of the weighting functions, based on ML and OS CFAR processors in local detectors, is obtained. In the binary type, we analyzed various distributed detection schemes based on maximum, minimum, and summation rules in fusion center. In the fuzzy type, we consider the various distributed detectors based on algebraic product, algebraic sum, probabilistic OR, and Lukasiewicz t-conorm fuzzy rules in fusion center. The performance of the two types of distributed detectors is analyzed and compared in the homogenous and nonhomogenous situations, multiple targets, or clutter edge. The simulation results indicate the superiority and robust performance of fuzzy type in homogenous and non homogenous situations.
Loading....